metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24⋊8D10, C10.892+ 1+4, (C2×D4)⋊40D10, (C22×D4)⋊10D5, (C22×C10)⋊13D4, (C22×C4)⋊28D10, C23⋊4(C5⋊D4), C5⋊5(C23⋊3D4), C23⋊D10⋊30C2, (D4×C10)⋊58C22, C24⋊2D5⋊12C2, Dic5⋊D4⋊41C2, (C2×C10).299C24, (C2×C20).644C23, (C23×C10)⋊14C22, (C22×C20)⋊44C22, C10.146(C22×D4), (C23×D5)⋊15C22, C23.D5⋊64C22, C2.92(D4⋊6D10), D10⋊C4⋊36C22, C10.D4⋊38C22, C23.206(C22×D5), C22.312(C23×D5), C23.23D10⋊28C2, C23.18D10⋊29C2, (C22×C10).233C23, (C2×Dic5).154C23, (C22×Dic5)⋊34C22, (C22×D5).130C23, (D4×C2×C10)⋊17C2, (C2×C10).582(C2×D4), (C2×C5⋊D4)⋊48C22, (C22×C5⋊D4)⋊17C2, (C2×C23.D5)⋊30C2, C22.20(C2×C5⋊D4), C2.19(C22×C5⋊D4), (C2×C4).238(C22×D5), SmallGroup(320,1476)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24⋊8D10
G = < a,b,c,d,e,f | a2=b2=c2=d2=e10=f2=1, ab=ba, ac=ca, faf=ad=da, ae=ea, bc=cb, ebe-1=bd=db, fbf=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 1294 in 346 conjugacy classes, 111 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, D5, C10, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C22≀C2, C4⋊D4, C22.D4, C22×D4, C22×D4, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×D5, C22×C10, C22×C10, C22×C10, C23⋊3D4, C10.D4, D10⋊C4, C23.D5, C22×Dic5, C22×Dic5, C2×C5⋊D4, C2×C5⋊D4, C22×C20, D4×C10, D4×C10, C23×D5, C23×C10, C23.23D10, C23.18D10, C23⋊D10, Dic5⋊D4, C2×C23.D5, C24⋊2D5, C22×C5⋊D4, D4×C2×C10, C24⋊8D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, 2+ 1+4, C5⋊D4, C22×D5, C23⋊3D4, C2×C5⋊D4, C23×D5, D4⋊6D10, C22×C5⋊D4, C24⋊8D10
(1 35)(2 31)(3 32)(4 33)(5 34)(6 36)(7 37)(8 38)(9 39)(10 40)(11 23)(12 24)(13 25)(14 21)(15 22)(16 27)(17 28)(18 29)(19 30)(20 26)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 75)(52 76)(53 77)(54 78)(55 79)(56 80)(57 71)(58 72)(59 73)(60 74)
(1 80)(2 76)(3 72)(4 78)(5 74)(6 73)(7 79)(8 75)(9 71)(10 77)(11 41)(12 47)(13 43)(14 49)(15 45)(16 46)(17 42)(18 48)(19 44)(20 50)(21 69)(22 65)(23 61)(24 67)(25 63)(26 70)(27 66)(28 62)(29 68)(30 64)(31 52)(32 58)(33 54)(34 60)(35 56)(36 59)(37 55)(38 51)(39 57)(40 53)
(1 13)(2 14)(3 15)(4 11)(5 12)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 40)(27 36)(28 37)(29 38)(30 39)(41 78)(42 79)(43 80)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)(51 68)(52 69)(53 70)(54 61)(55 62)(56 63)(57 64)(58 65)(59 66)(60 67)
(1 8)(2 9)(3 10)(4 6)(5 7)(11 16)(12 17)(13 18)(14 19)(15 20)(21 30)(22 26)(23 27)(24 28)(25 29)(31 39)(32 40)(33 36)(34 37)(35 38)(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 5)(2 4)(6 9)(7 8)(11 14)(12 13)(16 19)(17 18)(21 27)(22 26)(23 30)(24 29)(25 28)(31 36)(32 40)(33 39)(34 38)(35 37)(41 71)(42 80)(43 79)(44 78)(45 77)(46 76)(47 75)(48 74)(49 73)(50 72)(51 62)(52 61)(53 70)(54 69)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)
G:=sub<Sym(80)| (1,35)(2,31)(3,32)(4,33)(5,34)(6,36)(7,37)(8,38)(9,39)(10,40)(11,23)(12,24)(13,25)(14,21)(15,22)(16,27)(17,28)(18,29)(19,30)(20,26)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,71)(58,72)(59,73)(60,74), (1,80)(2,76)(3,72)(4,78)(5,74)(6,73)(7,79)(8,75)(9,71)(10,77)(11,41)(12,47)(13,43)(14,49)(15,45)(16,46)(17,42)(18,48)(19,44)(20,50)(21,69)(22,65)(23,61)(24,67)(25,63)(26,70)(27,66)(28,62)(29,68)(30,64)(31,52)(32,58)(33,54)(34,60)(35,56)(36,59)(37,55)(38,51)(39,57)(40,53), (1,13)(2,14)(3,15)(4,11)(5,12)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,40)(27,36)(28,37)(29,38)(30,39)(41,78)(42,79)(43,80)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,68)(52,69)(53,70)(54,61)(55,62)(56,63)(57,64)(58,65)(59,66)(60,67), (1,8)(2,9)(3,10)(4,6)(5,7)(11,16)(12,17)(13,18)(14,19)(15,20)(21,30)(22,26)(23,27)(24,28)(25,29)(31,39)(32,40)(33,36)(34,37)(35,38)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,5)(2,4)(6,9)(7,8)(11,14)(12,13)(16,19)(17,18)(21,27)(22,26)(23,30)(24,29)(25,28)(31,36)(32,40)(33,39)(34,38)(35,37)(41,71)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,73)(50,72)(51,62)(52,61)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)>;
G:=Group( (1,35)(2,31)(3,32)(4,33)(5,34)(6,36)(7,37)(8,38)(9,39)(10,40)(11,23)(12,24)(13,25)(14,21)(15,22)(16,27)(17,28)(18,29)(19,30)(20,26)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,71)(58,72)(59,73)(60,74), (1,80)(2,76)(3,72)(4,78)(5,74)(6,73)(7,79)(8,75)(9,71)(10,77)(11,41)(12,47)(13,43)(14,49)(15,45)(16,46)(17,42)(18,48)(19,44)(20,50)(21,69)(22,65)(23,61)(24,67)(25,63)(26,70)(27,66)(28,62)(29,68)(30,64)(31,52)(32,58)(33,54)(34,60)(35,56)(36,59)(37,55)(38,51)(39,57)(40,53), (1,13)(2,14)(3,15)(4,11)(5,12)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,40)(27,36)(28,37)(29,38)(30,39)(41,78)(42,79)(43,80)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,68)(52,69)(53,70)(54,61)(55,62)(56,63)(57,64)(58,65)(59,66)(60,67), (1,8)(2,9)(3,10)(4,6)(5,7)(11,16)(12,17)(13,18)(14,19)(15,20)(21,30)(22,26)(23,27)(24,28)(25,29)(31,39)(32,40)(33,36)(34,37)(35,38)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,5)(2,4)(6,9)(7,8)(11,14)(12,13)(16,19)(17,18)(21,27)(22,26)(23,30)(24,29)(25,28)(31,36)(32,40)(33,39)(34,38)(35,37)(41,71)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,73)(50,72)(51,62)(52,61)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63) );
G=PermutationGroup([[(1,35),(2,31),(3,32),(4,33),(5,34),(6,36),(7,37),(8,38),(9,39),(10,40),(11,23),(12,24),(13,25),(14,21),(15,22),(16,27),(17,28),(18,29),(19,30),(20,26),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,75),(52,76),(53,77),(54,78),(55,79),(56,80),(57,71),(58,72),(59,73),(60,74)], [(1,80),(2,76),(3,72),(4,78),(5,74),(6,73),(7,79),(8,75),(9,71),(10,77),(11,41),(12,47),(13,43),(14,49),(15,45),(16,46),(17,42),(18,48),(19,44),(20,50),(21,69),(22,65),(23,61),(24,67),(25,63),(26,70),(27,66),(28,62),(29,68),(30,64),(31,52),(32,58),(33,54),(34,60),(35,56),(36,59),(37,55),(38,51),(39,57),(40,53)], [(1,13),(2,14),(3,15),(4,11),(5,12),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,40),(27,36),(28,37),(29,38),(30,39),(41,78),(42,79),(43,80),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77),(51,68),(52,69),(53,70),(54,61),(55,62),(56,63),(57,64),(58,65),(59,66),(60,67)], [(1,8),(2,9),(3,10),(4,6),(5,7),(11,16),(12,17),(13,18),(14,19),(15,20),(21,30),(22,26),(23,27),(24,28),(25,29),(31,39),(32,40),(33,36),(34,37),(35,38),(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60),(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,5),(2,4),(6,9),(7,8),(11,14),(12,13),(16,19),(17,18),(21,27),(22,26),(23,30),(24,29),(25,28),(31,36),(32,40),(33,39),(34,38),(35,37),(41,71),(42,80),(43,79),(44,78),(45,77),(46,76),(47,75),(48,74),(49,73),(50,72),(51,62),(52,61),(53,70),(54,69),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63)]])
62 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | ··· | 4H | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10AD | 20A | ··· | 20H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 20 | 20 | 4 | 4 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
62 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | D10 | D10 | D10 | C5⋊D4 | 2+ 1+4 | D4⋊6D10 |
kernel | C24⋊8D10 | C23.23D10 | C23.18D10 | C23⋊D10 | Dic5⋊D4 | C2×C23.D5 | C24⋊2D5 | C22×C5⋊D4 | D4×C2×C10 | C22×C10 | C22×D4 | C22×C4 | C2×D4 | C24 | C23 | C10 | C2 |
# reps | 1 | 2 | 2 | 2 | 4 | 1 | 2 | 1 | 1 | 4 | 2 | 2 | 8 | 4 | 16 | 2 | 8 |
Matrix representation of C24⋊8D10 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 24 | 1 | 0 | 0 |
0 | 0 | 40 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 23 | 1 |
0 | 0 | 0 | 0 | 5 | 18 |
16 | 32 | 0 | 0 | 0 | 0 |
1 | 25 | 0 | 0 | 0 | 0 |
0 | 0 | 24 | 1 | 38 | 23 |
0 | 0 | 40 | 17 | 36 | 23 |
0 | 0 | 0 | 0 | 18 | 40 |
0 | 0 | 0 | 0 | 36 | 23 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 7 | 0 | 0 |
0 | 0 | 34 | 40 | 0 | 0 |
0 | 0 | 0 | 14 | 0 | 34 |
0 | 0 | 27 | 39 | 6 | 35 |
1 | 0 | 0 | 0 | 0 | 0 |
40 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 7 | 0 | 0 |
0 | 0 | 40 | 34 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 34 |
0 | 0 | 0 | 0 | 5 | 35 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,24,40,0,0,0,0,1,17,0,0,0,0,0,0,23,5,0,0,0,0,1,18],[16,1,0,0,0,0,32,25,0,0,0,0,0,0,24,40,0,0,0,0,1,17,0,0,0,0,38,36,18,36,0,0,23,23,40,23],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,7,34,0,27,0,0,7,40,14,39,0,0,0,0,0,6,0,0,0,0,34,35],[1,40,0,0,0,0,0,40,0,0,0,0,0,0,7,40,0,0,0,0,7,34,0,0,0,0,0,0,6,5,0,0,0,0,34,35] >;
C24⋊8D10 in GAP, Magma, Sage, TeX
C_2^4\rtimes_8D_{10}
% in TeX
G:=Group("C2^4:8D10");
// GroupNames label
G:=SmallGroup(320,1476);
// by ID
G=gap.SmallGroup(320,1476);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,675,570,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^10=f^2=1,a*b=b*a,a*c=c*a,f*a*f=a*d=d*a,a*e=e*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations